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Three-state neural network: From mutual information to the Hamiltonian
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The mutual information,I, of the three-state neural network can be obtained exactly for the mean-field
architecture, as a function of three macroscopic parameters: the overlap, the neural activity and theactivity-
overlap, i.e., the overlap restricted to the active neurons. We perform an expansion ofI on the overlap and the
activity-overlap, around their values for neurons almost independent of the patterns. From this expansion we
obtain an expression for a Hamiltonian which optimizes the retrieval properties of this system. This Hamil-
tonian has the form of a disordered Blume-Emery-Griffiths model. The dynamics corresponding to this Hamil-
tonian is found. As a special characteristic of such a network, we see that information can survive even if no
overlap is present. Hence the basin of attraction of the patterns and the retrieval capacity is much larger than
for the Hopfield network. The extreme diluted version is analyzed, the curves of information are plotted and the
phase diagrams are built.

PACS number~s!: 87.10.1e, 64.60.Cn, 07.05.Mh
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I. INTRODUCTION

The collective properties of neural networks, such as
storage capacity and the overlap with the memorized
terns, have been a subject of intensive research in the
decade@1,2#. However, more precise measures of their p
formance as an associative memory, as the information
pacity and the basins of attraction of their retrieval stat
have received comparatively less attention@3–6#. For some
models as the sparse-code networks@7–9#, or the three-state
networks@10–12#, where the patterns are not uniformly di
tributed, an information-theoretical approach@13–15# seems
crucial.

Calculations of the Shannon mutual information~I! for
the sparse-code network were made@16–18#. For low stor-
age of patterns, a few time steps are needed to retrieve t
@3,17#. However, for large storage, onlyimperfect retrieval is
possible. The closer to saturation, the larger the time s
required to dynamical retrieval. So, first-time retrieval is n
enough and it is interesting to study the information capa
of recurrent networks. To improveI for this recurrent net-
work, a scheme, based on a self-control threshold me
nism, was proposed@19#. This Self-Control Neural Network
~SCNN! is an adaptive scheme induced by the dynamics
self instead of imposing any external constraint on the ac
ity of the neurons. Such procedure successfully increa
both I and the basins of attraction of the patterns. Sim
mechanisms can improveI for three-state low-activity net
works @20#, with diluted and fully connected architectures

Here we propose a new method, based on direct use o
I calculated in the mean-field approximation, to obtain
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Hamiltonian which maximizesI within a large range of val-
ues for the activity of the network.

A three-state neural network is defined by the use of a
of m51, . . . ,p ternary patterns, $j i

mP$0,61%, i
51, . . . ,N%, which are independent random variables giv
by the probability distribution

p~j i
m!5ad~ uj i

mu221!1~12a!d~j i
m!, ~1!

wherea is theactivity of the patterns (j i
m50 are the inactive

states!. A low-activity three-state neural network corre
sponds to the case where the distribution is not uniform,
a,2/3. In the limita51 the binary Hopfield model is repro
duced.

The information enclosed in a simple unitj i
m is given by

the entropy of its probability, Hm i52a ln(a/2)2(1
2a) ln(12a). One can define as sparse a code whose f
tion of active neurons is very small and tends to zero in
thermodynamic limit@3#.

Besides the fact that ternary patterns are a step towar
analog neural model, they have the advantage that they
be generated with a bias but keep their symmetric distri
tion ~both 61 states are considered active!. An important
question related to the three-state model is the measure
of the retrieval quality in the cases where this is imperfe
Although for strictly homogeneous ternary patterns, t
Hamming distance can be used, for the cases whereaÞ2/3
the errors in retrieving the active states have different
evance~they contain more information than the inactive!. To
solve this problem, the conditional probability of neuro
states given the pattern states@20#, was used to obtain the
mutual informationI of the attractor neural network~ANN!.
This I is a function of three parameters: the overlapm, the
neural-activityq, and the activity-overlapn.

We then expand theI around the values of the paramete
when the neurons are independent on the patterns. This
pansion gives us an expression that can be interpreted

l-
d-
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PRE 62 2621THREE-STATE NEURAL NETWORK: FROM MUTUAL . . .
Hamiltonian, a function only of the neuron states and
synaptic couplings. This Hamiltonian is similar to th
Blume-Emery-Griffiths@21–28# spin-1 model~BEG!, but
with random interactions. The BEG model, originally pr
posed to study He3–He4 mixtures, was later used to describ
several systems, like memory alloys, fluid mixtures, mic
emulsions, etc., and displays a variety of new thermo
namic phases.

Some disordered BEG models have been recently stu
@29–31#, where either the exchange-interactions or
crystal-field are random variables. However, from o
knowledge, no random biquadratic-interactions model
been treated up to this date.

We describe our model and theI measure used to evalua
the performance of the ANN in Sec. II. In Sec. III we deriv
the BEG Hamiltonian fromI. After solving the thermody-
namics for this model in Sec. IV, we present some results
the dynamics and the phase diagrams in Sec. V, compa
the results with previous works. We conclude in the l
section with some comments about possible improvem
of the network.

II. MODEL

As well as the pattern states, the neuron states are th
state variables, defined as

s iP$0,61%, i 51, . . . ,N. ~2!

They are coupled to the other neurons through synaptic
teraction, the specific form of which will be obtained late
by construction. We will see they are of the Hebbian ty
that is, the learning is local~the synapses depend only on t
two neurons interacting!. Moreover, the updating rule will be
also obtained by construction, no supposition being d
here except that the patterns have the same three-state
metry as the neuron states.

The three-state patternsj i
mP$0,61%,m51, . . . ,p, are in-

dependent identically distributed random variables~IIDRV !
chosen according to the probability distribution in Eq.~1!.
There is no bias (̂j i

m&50) nor correlation between pattern
(^j i

mj i
n&50), anda5^uj i

mu2& is the activity of the patterns
An extensive load of patterns is achieved whenp5aN.

The mean-field networks have the property of being s
independent; that means, the correlations between diffe
sites are negligable in the thermodynamic limit,N→`. This
implies that every macroscopic quantity satisfies the con
tions of the law of large numbers~LLN !, so they can be
defined as an average on the probability distribution o
state in a single site. Alternatively, we may say that the pr
ability distribution factories,p($s%,$j%)5) i p(s i ,j i).

The task of retrieval is successful if the state of the neu
$s i t% matches~at least approximately! the pattern$j i

m%. The
measure of the quality of the retrieval we will use here is
mutual information, which is a function of the condition
distribution of the neurons given the patterns,p(suj). It has
been noted@19,20# that the order parameters which a
needed to calculatep(suj) are the thermodynamic limits o
the standard overlap of themth pattern with the neuron state
e
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mN
m[

1

aN (
i

j i
ms i→m5 K ^s&suj

j

aL
j

, ~3!

the neural activity,

qNt[
1

N (
i

us i t u2→q5^^s2&suj&j , ~4!

and the so calledactivity-overlap @20#,

nNt
m [

1

aN (
i

N

us i t u2uj i
mu2→n5 K ^s2&suj

j2

a L
j

. ~5!

In the expressions for the thermodynamic limits, limN→`
in the equations for,m,q,n, the indexm for the considered
pattern were dropped out. The averages are over the co
tional distribution,p(suj), and over the pattern distribution
p(j), in Eq. ~1!.

For the dynamics used in most work found in the liter
ture @10,12,32#, where the synapses used are of the Hopfi
form Ji j 5(mj i

mj j
m , the parameternN

m does not seem to play
any role in the evolution of the network, independent of t
architecture considered~diluted, layered or fully connected
for instance!. In fact it doesn’t appear in the expression f
the Hamming distance. However,nN

m is necessary to define
the mutual information of the network, as well as being ne
essary in computing the network’s performance@33,34#.

Knowing the conditional probability for each site and pa
tern, one can define theMutual Information I@13,14#, a the-
oretical information quantity used to measure the aver
amount of information that can be received by the user
observing the symbol~or the signal! at the output of a chan
nel. We can regard the pattern as the input and the neu
states as the output of the channel, so theI is written as

I @s;j#5S@s#2^S@suj#&j ,

S@s#[2(
s

p~s!ln@p~s!#, ~6!

S@suj#[2(
s

p~suj!ln@p~suj!#.

S@s# andS@suj# are the entropy of the output and the co
ditional entropy of the output, respectively. The quant
^S@suj#&j is also called theequivocation termof the I @s;j#.

Using the conditional probability obtained in Ref.@20#,

p~suj!5~sj1mjs!d~s221!1~12sj!d~s!,
~7!

sj[s1
n2q

12a
j2, s[

q2na

12a
,

the expressions for the entropies defined above are

S@s#52q ln
q

2
2~12q!ln~12q!,

^S@suj#&j5aSa1~12a!S12a ,
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Sa52
n1m

2
ln

n1m

2
2

n2m

2
ln

n2m

2
2~12n!ln~12n!,

~8!

S12a52s ln
s

2
2~12s!ln~12s!.

Several threshold mechanisms have been proposed
dynamical evolution of three-states, neural network@9#. Most
of them are fixed-threshold, using a Hopfield Hamiltonia
together with a Hebbian-like synaptic interaction. Recentl
Hopfield three-state network with a self-control~SC! mecha-
nism was introduced, the threshold of which adapts its
according to the following dynamics@20#: u t5c(a)D t . Here
c(a)5A22 ln(a) is a function only of the pattern activity
while the variance of the cross-talk noise~due to thep21
nonretrieved patterns! has the simple formD t5AaqNt for
the diluted architecture@35#. That yields the best perfor
mance for low-activity patterns. In this paper we take t
alternative approach of starting from the mutual informat
for the model, and in the results, both models are compa

III. DERIVATION OF THE HAMILTONIAN

We search for a Hamiltonian which is symmetric in a
permutations of the patternsjm, since they are not known
during the retrieval process. This imposes that the retrie
of any patternjm is weak, i.e.,s is almost independent of it
Then obviously the overlapmm;0. An expansion ofI with
a515q aroundmm;0 yields the Hopfield Hamiltonian. If
afterwards some particular overlap eventually becomes la
this should be a consequence of the network evolution.

However, for generala,q, this is not the only quantity
which vanishes in this limit. The variables2 is also almost
independent of (jm)2, so thatnm;q. Hence, the parameter

l m[
nm2q

12a
5^s2hm&,hm[

~jm!22a

a~12a!
, ~9!

also vanishes when the states of the neurons and the pa
are independent.

We use this fact to look at the information close to t
nonretrieval regime. An expansion of the expression for thI
aroundmm50,l m50 gives

I m'
1

2

a

q
~mm!21

1

2

a~12a!

q~12q!
~ l m!2. ~10!

Since this expression gives the information for a sin
site i of a single patternm, I (mm,l m)[I m, it should be
summedI pN5N(mI m to give the total information of the
network. It is natural to associate this quantity with the o
posite of the Hamiltonian, because the maximum of the
formation gives the minimal energy.

We suppose, as a further simplification of the model, t
the neural activity is of the same order of the pattern activ
q;a. This is made by convenience, otherwise the statist
mechanics of the model will be difficult to compute. Wi
this assumption,I from Eq.~10! depends in the same way o
mm andl m. Substituting the expressions for these paramet
given by the definitions~3!,~4! and ~5! ~before the thermo-
dynamic limit!, we obtain the following expression for theI:
s a

,
a

lf

e

d.
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e,

rns

e

-
-

t
,

al

s,

H52I pN[H11H2 , ~11!

where

H152
1

2 (
i j

Ji j s is j ~12!

and

H252
1

2 (
i , j

Ki j s i
2s j

2 ~13!

are the quadratic and the biquadratic terms, respectively.
above expression for the Hamiltonian, obtained from the m
tual information close to the nonretrieval regime, has
same form as of the BEG model@21#. We call our model the
BEG Neural Network~BEGNN!.

The interactions are randomly distributed, given by

Ji j 5
1

a2N
(
m51

p

j i
mj j

m ~14!

and

Ki j 5
1

N (
m51

p

h i
mh j

m . ~15!

The first term of the Hamiltonian is the usual Hopfie
model with the Hebbian rule given by Eq.~14!. The second
term, arising from the term depending onl m in Eq. ~10!,
related to the activity-overlap, is also Hebbian-like, but
associated, as will be seen later, with the quadrupolar o
of the system.

Note that the Hamiltonian formulation of the problem
only possible in the case of the fully connected neural n
work, where the interaction matrix is symmetric. In the ne
section we will present the dynamical formulation of th
problem, which can be applied to the cases of asymme
couplings@35#, although no Hamiltonian exists.

As is well known, the phase diagram of the usual BE
model is very rich, showing different phases, depending
the sign and the strength of the biquadratic coupling c
stant. Without any disorder and for very negative biquadra
coupling constant, a quadrupolar phase, related to the
drupolar moment̂ s2& also appears, apart from the usu
disordered and ferromagnetic phases@22–28#. However, our
variablesj i

m are quenched, so we have a disordered syst
BEG models with disordered quadratic coupling have be
recently studied@29–31#, showing some new phases~spin-
glass, quadrupolar spin-glass phases, etc.!, but, from our
knowledge, no disordered biquadratic BEG model has b
studied up to this date.

IV. ASYMPTOTIC MACRODYNAMICS

A. Thermodynamics for a\0

For the derivation of the asymptotic macrodynamics
will use a naive mean-field~MF! approach using the Hamil
tonian Eqs.~12!–~13!. Since the Hamiltonian is quadratic i
the overlaps, we can linearize it, using Gaussian transfor
tion, to obtain the partition function
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Z5Tr$s%e2bH

5E )
m

@DF~AbNmm!DF~AbNlm!#)
i

(
s561,0

eHi
˜

,

~16!

whereDF(z)[dze2(z2/2)/A2p, andb51/T. The effective
Hamiltonian is

Hĩ5his i1u is i
2 , ~17!

where the local fields are

hi5
1

a (
m

p

j i
mmm,

~18!

u i5(
m

p

h i
ml m.

After taking the trace over the spin variables, we appl
saddle-point integration and use the thermodynamic limit
get the free energy in terms of the parametersm, l andq,

f 52
T

N
ln Z5

1

2
~m21 l2!2T^ lnZ̃&j , ~19!

where the effective partition function is

Z̃5112ebu cosh~bh!. ~20!

The fieldsh,u are defined in Eq.~18!, but the indicesi can
be dropped out. The saddle-point equations] f /]mm50 and
] f /] l m50 lead to the following expressions for the statio
ary states:

mm5 K 1

a
jms̄ L

j

,

~21!
l m5^hms2&j ,

where the angular brackets mean the average over the
terns, and the thermal averages of the states are

s̄[Fb~h,u!5
1

Z̃
2ebu sinh~bh!,

~22!

s2[Gb~h,u!5
1

Z̃
2ebu cosh~bh!.

We remark that these Eqs.~22! are formally the same as fo
theQ53-Ising model@12,33#; however, the expression foru
is both site-dependent and a function of the order parame

For zero-temperature, the behavior of the averages is

F`~h,u!5sgn~h!Q~ uhu1u!,
~23!

G`~h,u!5Q~ uhu1u!,

where Q( . . . ) is thestep function. This naive thermody
namic approach is only valid if the number of patterns is
a
o

at-

rs.

t

extensive. Whenever the ratio of patternsa5p/N is finite,
the noncondensed overlaps yield another global order par
eter.

This result, obtained from the naive MF theory, can
easily understood if we write the Hamiltonian in Eq
~12!,~13! in the form

H5
1

2 (
i

Hĩ52
1

2 (
i

~his i1u is i
2!,

hi[(
j

Ji j s j , ~24!

u i[(
j

Ki j s j
2 .

From the first term of the Hamiltonian, its minimum aris
once the neuron states are given by

s i5sgn~hi !G~h,u!, ~25!

where G(h,u)P$0,1%. This form of s i doesn’t affect the
second term of the Hamiltonian. On the other hand, replac
Eq. ~25! in Eq. ~24! we arrive at

H52
1

2 (
i

~ uhi u1u i !G~hi ,u i !. ~26!

Now it is clear that if a minimum of this Hamiltonian holds
the expression forG(h,u) should be exactly the same a
G`(h,u), given in Eq.~23!.

B. Diluted dynamics

Alternatively to the thermodynamic approach, in the no
case, we can also start from the stochastic parallel dynam
@12,33#,

p~s i ,t11u$s t%!5exp@bH i
t̃#/Z̃, ~27!

whereH i
t̃ is given by Eq.~17! ~in the time stept), andZ̃ by

Eq. ~20!. Differently from the dynamics for the (Q53)-Ising
model @12,33#, here the fieldu5u($s j

2%) in the effective
Hamiltonian is a function of the states in the previous tim
steps. The resulting noise-averaged states coincide with
~22! in the stationary regime. Again, here the fieldu i is site-
dependent.

At T50, in comparison with theQ2Ising model
@12,36#, and with Eq.~25!, the following deterministic par-
allel dynamics, which leads to the minimization of the effe
tive Hamiltonian, is suggested,

s i ,t115sgn~hi
t!Q~ uhi

tu1u i
t!, ~28!

where the local fieldshi
t ,u i

t ~associated with the variable
s j ,t ,s j ,t

2 , respectively! are given in the time stept. Such
dynamics has the same form as the zero-temperature fun
F` in Eq. ~23!.

Because we are mainly interested in the retrieval prop
ties of our network, we take an initial configuration who
retrieval overlaps are only macroscopic of orderO(1) for a
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given pattern, let’s say the first one. We singled out the te
m51 in the local fields of Eq.~18! in order to study the
retrieval of the first pattern.

Supposing an initial configuration$s i ,t50% as a collection
of IIDRV with zero-mean and varianceqt50, the fieldsht50
andu t50 in the zeroth time step are given by

ht505
1

a
jmt501v t50 ; v t50[ (

n>2

p
1

a
jnmt50

n ,

~29!

u t505h l t501V t50 ; V t50[ (
n>2

p

hnl t50
n ,

where the indicesm51 were dropped, and the rest of th
patterns one regarded as some additive noise. Accordin
the Central Limit Theorem~CLT!, they are independen
Gaussian distributed@12,32#, with zero mean and variance

Var@v t50#5
1

a2
aqt50[D2,

~30!

Var@V t50#5
D2

~12a!2
.

Although the dynamics for the parametersmt ,nt andqt in
the first time step is a function of the initial step, the expr
sion for the noises in the next steps evolves with time i
more complicated way than in Eqs.~30!. In the extremely
diluted synaptic case@35#, however, the first time step de
scribes the dynamics for every time stept. This allows us to
calculate exactly its dynamics. Observe that the extreme
luted network has no possible Hamiltonian formulation, ne
ertheless, even if no feedback is present there, it can be
posed as an approximation of the fully connected netw
showing qualitatively similar behavior. From now on we w
adopt this limiting case. The effective Hamiltonian now is
be considered as an energy potential@32,36#.

Thus, in the asymptotic limitN→`, the expression for
the overlapmt5 lim

N→`
mNt

1 becomes, after averaging ove

the patternj,

mt115 K j

a
s t̄L

j

5E DF~y!E DF~z!FbS mt

a
1yD t ;

l t

a

1z
D t

12aD , ~31!

where the averages overv,V on the brackets should be don
with the Gaussian distributions, Eq.~30!.

The neural activity is the thermodynamic limit of Eq.~4!,
which reads

qt5^s t
2&j5ant1~12a!st ,

~32!

st11[E DF~y!E DF~z!GbS yD t ;2
l t

12a
1z

D t

12aD .

Here s is the variable defined in Eq.~7! and the activity-
overlap is given by
to

-
a

i-
-
p-
k

nt115 K j2

a
s t

2L
j

5E DF~y!E DF~z!GbS mt

a
1yD t ;

l t

a
1z

D t

12aD .

~33!

The equation forl t is obtained using the definition in Eq
~9!, l t5(nt2qt)/(12a). It is worth noting that the defini-
tions of the parametersm,q,n in Eqs. ~3! are the same as
those in Eqs.~31!–~33!, since the average over the cond
tional probability p(suj) is equivalent to the average ove
the noise due to thep21 remaining patterns$juj%. Equa-
tions ~31!–~33! describe the macro-dynamics of the dilute
BEGNN by adapting selfconsistently the threshold duri
the time-evolution of the system. With these equations
can calculate the mutual information from Eqs.~6!–~8!.

V. PHASE DIAGRAM

In this section we present some explicit results for t
BEGNN model. We first calculated the stable fixed points
Eqs. ~31!–~33! for the asymptoticN→` network, and ob-
tained the curves for the order parametersm,q,n and the
information i5Ia as a function of the load parametera for
two values of the activitya ~Fig. 1!. For small load (a
,0.2), the overlap remains close tom;1 and the neural
activity is q;a. When more patterns are stored in the n
work, i increases almost linearly, up to an optimal valu
i opt(aopt), after whichi decreases to zero inamax. The com-
parison is done with the self-control neural network (SCNN)
model @19,20#. It is seen that for small activities (a50.3),
the BEGNN model gives worse results than with the SCN
model, with a smaller value fori, while for a50.6 ~close to
the uniform distribution of patterns,a52/3), the BEGNN
performs better, an optimal value of the informationi
;0.15, although it is attained for a smaller value of loa
a;0.2. The reason for this behavior is that the third ord
parameter~related to the activity-overlap! is l;1 for the
BEGNN ~SCNN! and l !1 for the SCNN~BEGNN! with a
50.6(a50.3). Also the neural activity approachesq;2/3
~so it goes away fromq5a) sooner~with less patterns! for
the BEGNN than for the SCNN. In our opinion this is due
the approximation used in the Hamiltonian derivation,q5a.

The behavior of the order parameters and thei with load,
for the zero-temperature case, is presented for three diffe
values of the activities~Fig. 2!. The initial conditions are
used wherem051026,l 051,q05a, such that there is almos
no initial overlap. In this case there is always a sharp fall
the information fora not so much larger thanaopt. We see
different behaviors depending on the activities.

The corresponding dynamical phase diagram is drawn
Fig. 3. Four possible phases are present: the retrievalR(m
Þ0,lÞ0,q;a) and M (mÞ0,l ,0.5m,q;a) phases, the
quadrupolar phaseQ(m50,lÞ0,q;a) and the zero phase
Z(m50,l 50,q;a). The factor in the definition of theM
phase is somewhat arbitrary, indicating the appearanc
two different behaviors. The last phaseZ, so called because
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there is no information transmitted, is an analog to the s
sustained ~S! activity phase of the (Q53)-Ising ANN
@12,33#, since the parameter related to the spin-glass orde
qÞ0. We have not found any paramagnetic~P! phase, with
all (m50,l 50,q50) for the BEGNN. Note that the quadru
polar phase is a quite new phase, compared to the other
models and is a special one for the BEGNN model. T
phase is also present in the original BEG model@21#, as well
as in all its generalizations including disorder@29–31#. In the
language of the neural network, the quadrupolar phase m
that the active neurons (61) coincide with the active pat
terns, but the sign doesn’t. It is seen in Fig. 2, fora50.9,
where the overlap goes tom50 at a;0.13 ~much beforel,
which goes to zero ata;0.3); this phase corresponds
nonzero information, although there is no retrieval overl
The phaseR appears fora50.5, where bothm andl are large
and so isi. On the other hand, the phaseM is observed for
a50.1, where the parameterl is much smaller thanm. The
phase transitions fromR or M to Z are usually sharp, i.e.
first-order, forT50.

The behavior of the order parameters and the informa
with the temperatureT for fixed activitya50.5 is shown on
Fig. 4. We observe an increase ofi with the temperature
showing an optimal value forT;0.2. Such an improvemen

FIG. 1. The informationi 5Ia and the order parametersm,l ,q
againsta with activitiesa50.3 ~left! anda50.6 ~right!. The tem-
peratureT50 and the initial conditions arem051,l 051,q05a.
The continuous line is for the BEGNN while the dashed line is
the SCNN.
f-

is

N
s

ns

.

n

r

FIG. 2. The informationi and the order parametersm ~solid
line!, l ~thin line! and q ~dashed line! againsta with activities a
50.1 ~left!, a50.5 ~center! anda50.9 ~right!. The temperatureT
50 and the initial conditions arem051026,l 051,q05a.

FIG. 3. The dynamical phase diagrama3a, for T50 with ini-
tial conditionsm051026,l 051,q05a. The different phases are ex
plained in the text.
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of a feeble signal with noise, similar to the stochastic re
nance phenomena, appears also in other physical sys
@37#. A further increase in temperature leads to decreas
the information of the model. We note that this behav
doesn’t hold fora>2/3, nevertheless there is still an increa
of the storage capacityamax. The last result is in agreemen
with other investigations of dynamical activity of real an
model neurons, where the observed stochastic resonance
appears by increasing the amplitude of the external stim
@38#.

A cut of the phase diagram in the planeT3a for a fixed
value of the activitya50.7 is shown in Fig. 5. The dashe
line, which corresponds to the optimal case,i opt(a), is within
either the phaseR or Q. It is also interesting to observe tha
there are two separateQ-phase islands, for either small tem
peratureT and large loada or large temperatureT and small
loada. The phase transitions become smoother with the t
perature.

Finally, in Fig. 6 we present the evolution of the inform
tion and of the order parameters with the timet, for a given
temperatureT50.2 and activitya50.7, for two values of the
load parametera. As can be seen from this figure, fora
50.4, which is close to the transitionR-M , the change to the
behavior of the order parameters needs more time steps
for a50.2. This is not strange due to the critical slowin
down near the transition. However, an interesting new f
appears here: the parametersl t andqt have a fast melt down
to a much smaller value, after which the network stays a lo
while with an almost zero overlap, and finally the BEGNN
able to retrieve the pattern quite well. For instance, fora
50.2, l falls to l;0.6 andm stays nearm;0 during the first
t;20 time steps, then they jump up tol;0.8,m;0.9, which

FIG. 4. The informationi and the order parametersm ~solid
line!, l ~thin line! andq ~dashed line! againsta with temperatures
T50.0 ~left!, T50.2 ~center! and T50.4 ~right!. The activity a
50.5 and the initial conditions arem051026,l 051,q05a.
-
ms
g

r

dis-
s

-

an

t

g

means the memory pattern was~partially! attained. This re-
sult, caused by the instability of theZ-phase in this region,
makes the BEGNN capacity much larger than that of
usual Hopfield model, in all its versions so far as we kno

The behavior of the continuous phase transitions can
analytically studied within the mean-field approximation
expanding Eqs.~31!–~33! for small values of the order pa
rameters. A standard calculation, for example, for the tran
tion line QZ(m50,l !1) leads to the following expression

l QZ5bTc
QZl

1
~122a!b2

a2â2
l 2
•KebV coshbv

122ebV coshbv

~112ebV coshbv!3
L

V,v

,

~34!

where the transition temperature between the phasesQ andZ
is

Tc
QZ5

1

aâ
K 2ebV coshbv

~112ebV coshbv!2L
V,v

, ~35!

with

qQZ5K 2ebV coshbv

112ebV coshbv
L

V,v

1O~ l 2!. ~36!

Expanding the above expressions for a small value of
load rate and large temperatures,bAa!1, and calculating
the averages over the noise up to the leading terms,
obtains the following equation for the transition line:

FIG. 5. The dynamical phase diagrama3T, for a50.7 with
initial conditions m051026,l 051,q05a. The dashed line corre
sponds to the optimal information.
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Tc5
2

9aâ
2

1

2

~11â2!

aâ
a. ~37!

The last expression forTc is in qualitative agreement with
the previous results shown in Fig. 5.

Regarding the equation for the order parameterl, one can
verify that in leading order,

l QZ5bTc
QZl 2

1

27

~122a!

a2â2
b2l 21O~ l 3,a l 2!. ~38!

By use of Eq.~37!, it is seen that the quadratic term of th
above expansion changes sign when the activitya50.5, thus
defining a tricritical line between the transition of seco
order (a.0.5) and of first order (a,0.5). Note that similar
tricritical behavior has been described also in the other v
sions of the BEG model@22–31#. Similar analysis can also
be performed for the other continuous transition between
different phases.

VI. CONCLUSIONS

In this paper we proposed a BEG-like Hamiltonian for
ternary neural network, the couplings of which arise from
expansion of its mean-field mutual information,I @20#, re-

FIG. 6. The informationi and the order parametersm,l ,q,
against the timet for temperatureT50.2 and activitya50.7, with
a50.4 ~left! and a50.2 ~right!. The initial conditions arem0

51026,l 051,q05a.
r-

e

n

sulting in a system evolving with a self-consistently adapt
threshold. The stationary and dynamical equations for
model were obtained as functions of three order parame
the overlapm, the neural activityq, and the activity-overlap
n. Their solutions were explicitly calculated as functions
the variables: the pattern activitya, the loada and the tem-
peratureT. Only the extreme diluted version was studie
here, and we hope this work motivates a detailed invest
tion of the properties of the fully connected BEGNN.

The comparison with the SCNN model@19,20#, which is
the best model known of the Hopfield-like NN, particular
for small pattern activity, allows a characterization of t
BEGNN model. When the activity is neara52/3, corre-
sponding to the case of uniform ternary patterns, the B
GNN improves the information, compared with the SCN
model, while for small activities, it performs the worst, giv
ing a smaller value for the information. We argue that this
due to the approximationq;a, used in the derivation of the
Hamiltonian. We expect this paper stimulates analytical
simulation works which do not use such an approximatio

Improvement of the information content by increasing t
noise, an effect similar to the stochastic resonance, is
observed for activitiesa,2/3, which is in agreement with
results for real neurons.

There are four possible phases for the BEGNN, wh
were displayed in phase diagramsa3a and T3a. In par-
ticular, a quadrupolar phase,Q, with m50,l;1, holds when-
ever the activity is large enough. This phase, known in
BEG literature, but new in an ANN context, carries out som
nonzero information about the patterns even without a
overlapm.

The phase transitions between the different phases
also investigated, showing sharp or continuous behavior,
pending on the parameters. As the main result we obtai
that, while the phaseZ is not stable in a large range of th
variables, the basin of attraction of the retrieval phase
increased with respect to the usual ternary neural netw
models. States with initial conditions, which have very sm
overlap, flow to final states with large overlap.

We believe that the BEGNN has a quite large range
applications for real systems. We also think that this way
obtain a Hamiltonian starting from a mean-field calculati
of I, which yields an almost optimal retrieval dynamics, c
be generalized to other spin systems, as theQ-Ising with Q
.3 or the Potts models, for instance. Such a method, ba
on the maximization of the entropy, can be a universal
proach to information systems.

Then, we expect that the same improvement should h
pen for analog neurons and for networks of binarysynapses.
It would be also interesting to investigate the case of lo
field for multi-neuron synapses, which comes up from high
order terms in the expansion of the mutual information, su
that a better use of a network with fixed size is expected
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